静岡学園なごみ高等学校 通信教育実施計画書

教科・科目	単位数	年次	教科書	副教材
数学Ⅲ	3	3年	東京書籍数学Ⅲ Standard	
評価方法	添削指導	(計9回)	,試験(年2回),面接指導	算(年3回)での評価

指導目標 数学的な見方・考え方を働かせ、数学的活動を通して、数学的に考える資質・能力を次のとおり育成することを目指す。

- (1) 極限,微分法及び積分法についての概念や原理・法則を体系的に理解するとともに,事象を数学化したり,数学的に解釈したり,数学的に表現・処理したりする技能を身に付けるようにする。
- (2) 数列や関数の値の変化に着目し、極限について考察したり、関数関係をより深く捉えて事象を的確に表現し、数学的に考察したりする力、いろいろな関数の局所的な性質や大域的な性質に着目し、事象を数学的に考察したり、問題解決の過程や結果を振り返って統合的・発展的に考察したりする力を養う。
- (3) 数学のよさを認識し積極的に数学を活用しようとする態度、粘り強く柔軟に考え数学的論拠に基づいて判断しようとする態度、問題解決の過程を振り返って考察を深めたり、評価・改善したりしようとする態度や創造性の基礎を養う。

〔評価の観点〕

- 【主体性】・数学のよさを認識し積極的に数学を活用し、粘り強く柔軟に考え数学的論拠に基づき判断している。
- ・問題解決の過程を振り返って考察を深めたり、評価・改善をしている。

【知識·技能】

- ・極限, 微分法及び積分法についての概念や原理・法則を体系的に理解している。
- 事象を数学化したり、数学的に解釈したり、数学的に表現・処理したりすることに関する技能を身に付けている。
- 【思考・判断力・表現力】・数列や関数の値の変化に着目し、極限について考察したり、関数関係をより深く捉えて事象を的確に表現し、数学的に考察したりする力を身に付けている。
- ・いろいろな関数の局所的な性質や大域的な性質に着目し、事象を数学的に考察したり、問題解決の過程や結果を振り返って統合的・発展的に考察したりする力を身に付けている。

添削課題	単元名	指導項目·概要	スク―リング実施計画 (実施内容)
第1回	◆関数	1 分数関数とそのグラフ2 無理関数とそのグラフ3 逆関数と合成関数	面接指導(~2月28日まで) ・分数関数のグラフの特徴について ・無理関数のグラフの特徴について ・逆関数と合成関数の意味について
第2回	◆数列の極限	1 数列の極限2 無限等比数列3 無限級数	・数列の収束,発散と数列の極限の基本的な性質について ・無限等比数列が収束する条件について ・無限級数の収束と発散について
第3・4回	◆関数の極限	1 無限級数 2 いろいろな関数と極限	・無限級数の収束と発散について ・指数関数,対数関数,三角関数などの極限に ついて
	◆微分	 関数の連続性 導関数 積・商の微分法 合成関数の微分法 三角関数の導関数 	・関数の連続性及び中間値の定理について ・導関数の定義について ・積・商の導関数について ・合成関数の微分法及び逆関数の微分法について ・三角関数の導関数について

添削課題	単元名	指導項目•概要	スク―リング実施計画 (実施内容)
第5回	◆微分 ◆微分の応用	1 対数関数・指数関数の導 関数2 高次導関数3 接線の方程式4 関数の増減	・高次導関数について ・自然対数の底 e, 対数関数の導関数, 指数関数の導関数について ・曲線の接線の方程式及び法線の方程式について ・関数の増減, 極値を求めることについて
第6回	◆微分の応用	1 第2次導関数とグラフ 2 最大と最小 3 方程式・不等式への応用 4 速度・加速度 5 近似式	・曲線の凹凸に関する性質について ・微分法を用いて、関数の最大値・最小値を求 めることについて ・微分法を用いて、不等式を証明や方程式の実 数解の個数を調べることについて ・運動する点の速度・加速度について ・関数の近似式を求めることについて
第7回	◆積分とその応用	 不定積分 置換積分法 部分積分法 いろいろな関数の不定積分 	・不定積分の基本的な性質について ・置換積分法について ・部分積分法について ・部分分数分解及び三角関数の加法定理か ら導かれる積を和・差に直す公式につい て
第8回	◆積分とその応用	1 定積分 2 定積分の置換積分法と 部分積分法 3 定積分で表された関数 4 定積分と区分求積法	・いろいろな関数の定積分について・置換積分法や部分積分法を用いて,定積分の値を求めることについて・積分と微分の関係について・区分求積法の考え方について
第9回	◆積分とその応用	1 面積 2 体積 3 曲線の長さと道のり	・いろいろな曲線で囲まれた図形の面積の求め方について・立体の体積が定積分によって求められることについて・曲線の長さが定積分によって求められることについて